

Actualités in Hématologie

Imagerie fonctionnelle et hémopathie du sujet âgé

Pr. Andrea Gallamini Département de recherche, innovation médicale et statistique Hôpital A. Lacassagne. Nice (France).

PET as a biomarker of tumor glycolysis:

(Warburg effect)

- FDG-PET selectively images tissues with accelerated glycolytic activity such as brain and heart.
- Neoplastic cell demonstrate an accelerated glycolysis compared to healthy tissues (> 200x) (Warburg effect)¹.
- This could be explained by the up-regulation of the transmembrane glucose transporter protein GLUT-1 in tumors
- Chemotherapy switches off the metabolic activity of neoplastic cells along with its FDG uptake.

Otto Heinrich Warburg 1883-1970

Warburg effect exceptions in lymphoma. ME cells - I

In Hodgkin Lymphoma neoplastic and ME cells accounts for 1-5% and 95% of the total cells in tissue sample, respectively. CT is able to "switch-off" the metabolic activity of ME cells. These play a specific role in HL imaging: they act as an "amplifier" of ¹⁸F-FDG signal and increase the detection ability of PET scan.

Glut-1 expression: HRS cells

Glut-3 and Glut-6: ME cells

Hartman s: BMC Cancer. 2012 Dec 10;12:586.

Warburg effect exception in NSCLC-II

Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patients with non-small cell lung cancer (NSCLC) who are candidates for upfront surgery

Egesta Lopci¹ · Luca Toschi² · Fabio Grizzi³ · Daoud Rahal⁴ · Laura Olivari¹ · Giovanni Francesco Castino³ · Silvia Marchetti² · Nina Cortese³ · Dorina Qehajaj³ · Daniela Pistillo² · Marco Alloisio⁵ · Massimo Roncalli^{4,6} · Paola Allavena⁶ · Armando Santoro^{2,6} · Federica Marchesi^{3,7} · Arturo Chiti^{1,6}

- 55 patients affected by lung tumor (36 adK., 15 SCC)
- Median SUV_{max} 11.3 (2.3-32), and SUV_{mean} 6.4 (1.5-13)
- Both significantly higher in SCC compared to other subtype (p=0.007 and 0.04, respectively)
- Statistical correlation between of SUVmax and SUV mean with
 - CD8 TILS (rho= 0.31; p=0.027)
 - PD-1 TILS (rho=0.33; p= 0.017)
- SUVmax, SUVmean and stage correlated with DFS (p=0.002, p=0.004 and <0.001)

Correlation between SUVmax, SUVmean and PD-1 and between PD-1 and CD8-TILs

PD1 in ME cells and Outcome in cHL

PD-1/PD-L1 in the Immune Response

Binding of activated T-cell to Tumor cell via TCR-MHC antigen induces cell lysis

Binding of PD-L1 to PD-1 receptor downregulates T-cell effector functions

Kinetics of ¹⁸FDG uptake

- Neoplastic cell: \uparrow GLUT1= \uparrow FDG uptake, \uparrow hexokinase/glucose-6-phosphatase ratio = \uparrow \uparrow ¹⁸FDG trapping^{1,2,3}.
- Microenvironment cell: ↑GLUT3 = ↑ FDG uptake, but ↓
 hexokinase/glucose-6-phosphatase ratio = ↑¹8FDG trapping, with some spontaneous eluition²,³.
- Several reports confirmed that the FDG uptake kinetics over time could contribute to differentiate neoplastic from inflammatory tissue^{4,5}.

¹Pauwels, E.K., et al.,. Nucl Med Biol, 1998. 25(4): p. 317-22.

²Zhuang, H., et al.,. J Nucl Med, 2001. 42(9): p. 1412-7.

³Hartmann et al. BMC Cancer 2012, 12:586

⁴Barger, R.L.,. Acad Radiol, 2012. 19(2): p. 153-8.

⁵Zhang, L., Acta Radiol, 2013 Sep 1;54(7):770-7

What is "Immunosenescence"?

Immunosenescence in elderly patients (>65 yrs.):

depleted population of naïve T cells

immune challenges and cancer cells proliferation: timing does matter!

 Th2 cytokines •Shrinking repertoire of T cell clone Glucocorticoids Th1 cytokines · II -10 TLR ligands •Increasing number of T-reg. (CD4+ Foxp3+) downregulating T cell response •A low-grade pro-inflammatory status M1 M2 •Macrophage polarization: $M_1 \rightarrow M_2$ and Increased number of MDSC Th₂ response response Macrophage polarization promotes cancerrelated inflammation through cytokine (IL-6, TNF) **TNF** IL-1 IFNy IL-4 IL-12 and chemokine (CCL2, CXCL8, CXCL 12) IL-13 production Th1 NK Th2 Interactions between · Killing intracellular Angiogenesis bacteria · Stimulation adaptive Scavenging immunity Type I inflammation · Wound healing Allavena P: Clin Exper. Immunology 2012; 167:195-205. Camille J.: Evolution, Medicine and public health 2016; p299-311

Monocyte

Macrophage

M-CSF

Eudract Number: 2014-003320-51

A phase 1/2 clinical trial to assess safety and efficacy of a new treatment for Hodgkin lymphoma's disease combining Adcetris® and Levact® in Old patients

Hodgkin lymphoma treatment with Adcetris and Levact in the Old patient

Report from the 2nd interim analysis (28.02.2017)

HL in the elderly

- Age > 60 Y.; 15%-35% of the whole HL population
- Different disease:
 - MC 31%-50%; EBV+ > 34%
 - Advanced or infra-diaphragmatic disease.
- 5-Y EFS 30-40%; 5-Y OS 40-50%.
- ABVD often used, but not considered standard of care
- Bleomycin lung toxicity (BLT) prohibitive, increased by G-CSF
- BLT rate: 18%
- TRM: 9% Vs. 0.3% (<60 y.).
- Role of co-morbidity
- Reduced RDI

BE-BV in relapsed/refractory HL

- 55 HL pts, 53 evaluable for response
- 51% had relapsed 49% refractory disease
- BV: 1.8 mg/Kg. q. 21 Days Be 90 mg/m² day 1° - 2° q 21 days x 6 cycles
- Eligible patients underwent ASCT, followed by BV maintenance.
- CR 74% ORR (CR + PR): 93%
- The CR rate was 64% for for refractory and 84% for relapsed pts, respectively.
- Estimated 1-Y PFS 80%.

PET assessment following the Lugano criteria:

1-3: Negative

4-5: Positive

Salvage therapy is out of study on investigator decision

- 1) Adcetris® (BV): 1.2 mg/kg intravenously
 - Infusion over 30 min
- 2) Levact® (Be): 90 mg/m²/day IV at D1 and D2
 - •30 min after Adcetris infusion, Infusion over 30-60 min

HALO Design:

Phase 1 (Toxicity)

The phase is composed of two stages with only one dose of treatment (no escalation) Stopping rules toxicities is defined as :

- Grade 2 neuropathy
- Grade 3 Neutropenia and thrombocytopenia

The inclusions will be not suspended between the two stages

Stage 1 :Inclusion of 6 patients Patients with toxicity: Go to stage 2 OK Addition of 6 patients → STOP Phase 2 (Efficacy) Stage 1: Inclusion of 19 patients Patients with CR: Addition of 34 patients < 13 → STOP 6 patients with toxicities (30%)

→ IDMC + STOP

Stage 2: Inclusion of 53 patients Patients with CR:

Image Exchange for Blinded independent central review

SCANNERS OR WORKSTATIONS

WIDEN

LOCAL WORKSTATIONS OR WEB-VIEWER

No hardware or software installation required for PET sites

Exchange for all Image Modalities, including RT

DICOM interoperability

Patented ®

Inclusions at 28.02.2017

Inclusions for center at 28.02.2017

Demographics (N=22)

	Modality	
Age	Median (range)	69.6 (62-79)
Gender	M/F	14/8
Performance state	0-2	19
	>2	3
Stage	IIB	4
	III	9
	IV	9
B Symptoms	N/Y	8/14
LDH (U/I)	Median (range)	452 ± 209.09
Bulky	Y/N	2/22
Hemoglobin (gr./dl)	Median (range)	12.82 ± 1.96
Leukocytes (n°/μl)	Median (range)	9.09 ± 3.96
IPS	0-1	0
	2-3	15
	>3	7

Comorbidity

Comorbidity	Number	Frequency
Alcohol use	1	2.86%
Aortic valve insufficiency	1	2.86%
Atrial fibrillation	2	5.71%
Cardiac pacemaker insertion	1	2.86%
Carotid artery stenosis	1	2.86%
Chronic obstructive pulmonary disease (COPD)	1	2.86%
Colitis ulcerative	1	2.86%
Diabetes mellitus	2	5.71%
Diverticulitis	1	2.86%
Hypercholesterolemia	3	8.57%
Hypertension	10	28.57%
Hypothyroidism	1	2.86%
Retinal maculopathy	1	2.86%
Peripheral sensory neuropathy	1	2.86%
Phlebitis superficial	1	2.86%
Pulmonary hypertension	1	2.86%
Pyelonephritis	1	2.86%
Rheumatoid arthritis	1	2.86%
Thyroid disorder	1	2.86%
Urostomy	1	2.86%
Ventricular extra systoles	1	2.86%

Toxicity grade 3-4 by cycle (N= 112)

Neutropenia	9
Thrombocytopenia	3
Anemia	0
Febrile neutropenia	0
CMV reactivation	1
Infection	0
Rash maculo-papular	1
Drug hypersensitivity	1
Liver toxicity	2
Pulmonary embolism	1
Stomatitis	2
Pyrexia	1
Other (Lympho-, Leukopenia, Leukocytosis, ↑INR)	89

Treatment outcome (N=15)

Response (Clinical)	PET-2 score (N°)	Clinical Response C2	PET-6 score (N°)	Clinical Response C6
CR	1-3 (17)	15	1-3 (13)	14
PR	4(1), 5(1)	5	4(1)	0
SD-PRO	5(1)	1	4(1)	1
n.a.	2	1	7	7
Total	22	22	22	22

After a mean follow-up of 271 (135-445) days 10/15 are still in continuous CR: 5/15 showed disease relapse +154 days, + 280 days, +303 days, + 378 days and + 488 days, after registration.

PET2 positive: 3 cases

PET2 negative: 17 cases

Merci à nos confrères...

Schiano

de Colella

Grasso

Cantonetti

Viviani

Rambaldi

Patti

Responsible

Thyss

Soubeyran

Bologna

Molina

Thank you for the attention

Pr. Andrea Gallamini
Research, Innovation and Statistics.
A. Lacassagne Cancer Center, Nice - France

andreagallamini@gmail.com

